Bayesian latent variable models for median regression on multiple outcomes.

نویسندگان

  • David B Dunson
  • M Watson
  • Jack A Taylor
چکیده

Often a response of interest cannot be measured directly and it is necessary to rely on multiple surrogates, which can be assumed to be conditionally independent given the latent response and observed covariates. Latent response models typically assume that residual densities are Gaussian. This article proposes a Bayesian median regression modeling approach, which avoids parametric assumptions about residual densities by relying on an approximation based on quantiles. To accommodate within-subject dependency, the quantile response categories of the surrogate outcomes are related to underlying normal variables, which depend on a latent normal response. This underlying Gaussian covariance structure simplifies interpretation and model fitting, without restricting the marginal densities of the surrogate outcomes. A Markov chain Monte Carlo algorithm is proposed for posterior computation, and the methods are applied to single-cell electrophoresis (comet assay) data from a genetic toxicology study.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data

The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...

متن کامل

Bayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data

A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...

متن کامل

Application of Bayesian Latent Variable Model for Early Detection of Gestational Diabetes Mellitus Without A Perfect Reference Standard Test by β‐human Chorionic Gonadotropin

Background and Objectives: Gestational diabetes mellitus (GDM) is a medical problem in pregnancy, and its late diagnosis can cause adverse effects in the mother and fetus. The purpose of this research was to estimate the accuracy parameters of a biomarker for early prediction of gestational diabetes in the absence of a perfect reference standard test.   Methods: This study was conducted in 52...

متن کامل

Using multivariate generalized linear latent variable models to measure the difference in event count for stranded marine animals

BACKGROUND AND OBJECTIVES: The classification of marine animals as protected species makes data and information on them to be very important. Therefore, this led to the need to retrieve and understand the data on the event counts for stranded marine animals based on location emergence, number of individuals, behavior, and threats to their presence. Whales are g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biometrics

دوره 59 2  شماره 

صفحات  -

تاریخ انتشار 2003